Free Calculator

an educational tool for

Engine Failure and Return to Airport

Presented by Dr. George Bolon

With Corps Members

Reed Niederkorn Scott Sloan Nigel Smith

Special Thanks to:

Minneapolis FAAST Team

Nick Halatsis Troy Siekas

FAASTeam Safer Skies Through Education

FAA
Aviation Safety

WHY DEVELOP A CALCULATOR TO SUMULATE A RETURN TO THE RUNWAY AFTER POWER FAILURE?

> SAFETY <

Our Flight Goals Are:

1. No individual is injured

2. We accomplish the purpose of the flight

... By Increasing the Pilot's
 Knowledge, Understanding, Skills and Decision Making for Single Engine Failure on Take Off

PERSONAL THOUGHTS...

THREE CRITICAL SUCCESS FACTORS for PILOTS

I. An Intimate Knowledge of your Business
II. An Attitude of:
a. Continual Skepticism;
b. Situational/Positional Awareness;
c. Choosing the Most Conservative Approach
III. The Development and Use of Effective Standard Operating Procedures; THE COMPANY MANUAL

Author's Note

I. Remember you as Pilot in command must:

1. Know what you want or are asked to do
2. Have a Plan or Series of Steps on how to Accomplish \#1
3. And, KNOW you can do it - if you have a doubt, DON'T TRY TO DO IT.
II. Cross Country Flights are made on the Ground Prior to Takeoff.
III. The Best Safety Component of an Aircraft is a PROFESSIONALLY TRAINED PILOT

IN OUR VIEW, THE BEST SAFETY COMPONENTS OF AN AIRCRAFT ARE:
I. A Professionally Trained Pilot
II. Harnesses for the Occupants

4 point Harness

13-Mar-24

3 point harness w/ Airbag

STEPS FOR GO/ NO-GO DECISION FOR A RETURN TO

THE RUNWAY

I. Use of the Calculator to determine minimum and maximum critical altitudes
II. Compliance with pre-takeoff PILOT BRIEF
III. Ground and Simulator Training to increase Pilot's knowledge and skills
IV. You may wish to do validation testing at a "safe altitude" (We utilize 3,000' AGL)

What causes power plants to fail?

Lack of:
 - Air
 - Fuel
 - Ignition

WHY 210° OF TURN?

SEGMENTS OF A RETURN TO THE

 RUNWAY1) Pilot Brief
2) Takeoff Roll
3) Climb Out
4) Time Delay affer Power Failure
5) Primary Turn
b) Glide Back
6) Align with Runway and Land

CALCULATOR DEMONSTRATIONS

CALCULATOR TAKEAWAYS: TAKE OFF ROLL AND CLIMB OUT

I. Start roll as close to beginning of runway as possible
II. Accelerate Smoothly
III. Climb Out between Vx and Vy
IV. Climb at V best glide if that speed is between Vx and Vy to reduce load on Pilot if engine loss occurs

CLIMB OUT- WHY IS CLIMB SPEED SO IMPORTANT?

210 Degrees
I. Objective is to gain as much altitude as possible while staying as close to runway end as possible.
II. Best angle of climb (Vx) is usually the best target.
III. Glide back flight deck pitch angle is generally greater than Vx or Vy for aircraft with fixed landing gear.
IV. Note: In most cases, a longer climb time results in lower chance to return to runway due to distance.
v. And for many aircraft, above some maximum altitude, you can no longer make it back to the runway due to distance.

Altitude Relative to Runway position for Vx, Vy, and Glide back for C172N

TIME DELAY AFTER POWER FAILURE (PF) AND ITS SIGNIFICANCE TO MAKING IT BACK

I. For every second the pilot waits to turn back to the runway, the aircraft is more than 100 ft farther away from the runway and loses more altitude.
II. For this case, more than a 7 second delay results in the pilot not being able to return to the runway surface.
III. How long should a pilot nurse a failing engine before making the decision to turn back, or go straight ahead and look for a place to land?

What should the bank angle be in the turn?

I. Stall speed increases with bank angle (G Loading) so we must choose carefully to avoid the possibility of an accelerated stall/spin.
II. Goal is to maintain "Best Glide" speed all the way to the ground fighting one's natural tendency to pull back when we see the ground coming up at us.
III. In this case of a 35 degree bank we have a $\mathbf{2 5 \%}$ stall safety factor.
IV. If we would increase the bank to 55 degrees, now safety factor of only 6% !

what should the PRIMARY TURN angle be?

210 Degrees
I. Since 240 and 270 degree turns are nearly identical in glide path length and altitude loss, there is no good reason to ever turn beyond 240 degrees
II. Minimum runway length for return to runway is less for 210 degree turn
III. Return path length and altitude loss are substantially greater for furns less than 210 degrees

HOW TURN ANGLE AFFECTS ALTITUDE LOSS AND TOUCHDOWN POINT

FOCUS AREAS FOR GLIDE BACK AND LANDING

I. As soon as the Primary Turn is completed on Instruments, now look outside and visually assess whether you require up to 30 additional degrees.
II. Maintain Airspeed (Vbg) and Heading.
III. Resist temptation to pull back on the yolk as the ground is coming up at you.
IV. Maintain Best Glide until the Wheels/Skin SQUEAK.

EFFECT OF CROSS-WIND ON RETURN PATH TO

If you make your turn with the wind as in the case in RED, you could find it difficult to get back to the runway centerline

Turning into the wind (GREEN case) makes it a bit easier to get back to the runway

EFFECT OF HEADWIND VELOCITY COMPONENT

- Wind increases climb angle before PF
- Wind decreases glide angle after PF
- Short runways may make runway return impossible without headwind
- Do not overestimate wind at BRIEF

Note: \quad PILOT BRIEF FOR CESSNA 172N

* Example of a Captain's VFR Brief:

"This shall be a Standard Company Max Power VFR Brake Release (On the Roll) Takeoff from Runway \qquad at ___ above all Landing Minimums. If we have any Un-Briefed Anomalies Prior to Liftoff (V1) We Shall Reject the Takeoff. For An Engine Failure, Catastrophic Loss of Directional Control or a Wildlife Strike that results in a Catastrophic Loss of Directional Control; below 500 ft . (AGL); \qquad MSL; We Shall Land Straight Ahead +/- Thirty (30) Degrees Maintaining Best Glide Speed of 65 KIAS until the Wheels Squeak. If we are VFR and above 500 ft (AGL); \qquad (MSL) and Any of the Preceding Occurs or We have a FIRE; We shall make a 210 Degree Turn to the (left or right) into the wind at a Thirty Five (35) Degrees Angle of Bank, maintaining Best Glide Speed of 65 KIAS, for a Return to Runway \qquad , or Anywhere on the Airport Environment. If we have no issues our Clearance is Runway Heading in the Heading Mode to 400 ft (AGL); \qquad (MSL) complete the 400 ft Checklist; engage the A/P (if applicable) and proceed via our Clearance/Flight Plan Route to \qquad and Climb as Cleared /Instructed To . Do you have any questions or suggestions" *NOTE: 65 KIAS until the WHEELS SQUEAK*

"BOLON METHOD"
 FOR CAPABILITY OF A TURN BACK TO
 THE RUNWAY

I. Application of Calculator to find the minimum and maximum critical altitudes;
II. Incorporating Calculator information into "PILOT BRIEF;"
III. Ground and Simulator Training to increase Pilot's skills and competency;
IV. "At altitude" flight exercises for real world Validation Testing;
V. Maintaining Focus and Best Glide (Vbg) on all maneuvers necessary to return to the runway until the wheels (or skin) squeak.

>DO ME A FAVOR

A SUMMARY OF HIGH POINTS:

Density Altitude;
Reaction Time;
Runway Length;
Flying the Instruments through 210°; High Performance Aircraft.

I. 3 Critical Success Factors
 II. Go No-Go Decision
 III. Calculator User Manual
 IV. Calculator Program
 V. Before Take Off BRIEF
 VI. Reference Sources
 VII.Where to go to tell us how you thought we did

ATTENDEES QUESTIONS AND COMMENTS

Where to get the FREE Calculator and Resources?

httips://www.twotendegrees.com

THANK YOU FOR JOINING US ALONG THE YELLOW-BRICK RUNWAY Production

